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Abstract We consider the dynamics of chemical reaction networks under the
assumption of mass-action kinetics. We show that there exist reaction networks R
for which the reaction rate constants are not uniquely identifiable, even if we are given
complete information on the dynamics of concentrations for all chemical species of
R. Also, we show that there exist reaction networks R1 �= R2 such that their dyna-
mics are identical under appropriate choices of reaction rate constants, and present
theorems that characterize the properties of R, R1, R2 that make this possible. We
use these facts to show how we can determine dynamical properties of some chemical
networks by analyzing other chemical networks.

Keywords Chemical reaction networks ·Mass-action kinetics ·
Parameter identification

1 Introduction

A chemical reaction network, under the assumption of mass-action kinetics, gives rise
to a dynamical system governing the concentrations of the different chemical species
[1–11]. We are interested in studying the inverse problem, i.e., the identifiability of
the reaction network and of its reaction rate constants, given the dynamics of chemical
species concentrations.
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In modern chemical and biochemical research, it has become very common to
collect detailed information on time-dependent chemical concentration data for large
networks of chemical reactions (see survey papers [12,13]). In most cases, only the
identity of the chemical species present in the network is known, and the exact structure
of the chemical reactions, as well as the reaction rate constants are unknown; in other
cases the set of chemical reactions (i.e., the reaction network) is also known, and only
the reaction rate constants are unknown.

A great variety of computational methods have been developed for the identification
of chemical reaction networks and their reaction rate constants from time-dependent
measurements of chemical species concentrations [14–21]. On the other hand, two
different reaction networks might generate identical dynamical system models, making
it impossible to discriminate between them, even if we are given experimental data
of perfect accuracy and unlimited temporal resolution. (Sometimes this limitation is
referred to as the “fundamental dogma of chemical kinetics”, although it is actually not
a well known fact in the engineering or biochemistry communities [13,22,23]). We
approach this issue in Sect. 4 where we describe necessary and sufficient conditions
for two reaction networks to give rise to the same dynamical system model.

Also, we will show that, even if we know the reaction network that gives rise
to the chemical dynamics under study, there might exist multiple sets of reaction rate
constants that provide perfect fit for the data since they give rise to identical dynamical
system models. In Sect. 3 we will describe necessary and sufficient conditions for the
unique identifiability of the reaction rate constants of a chemical reaction network.

In Sect. 5 we apply some of these results in the case of a reaction network with
n species, that contains all possible reactions among all possible unimolecular and
bimolecular complexes. This reaction network is very important in applications, since
it is the default network used if no a priori information is provided on the reaction
network structure [14]. We show that the number of unknown parameters (reaction
rate constants) can be reduced from O(n4) to O(n3) without loss of generality on
the kinetics, by considering dynamically equivalent reduced networks, but no reduced
network with uniquely identifiable rate constants exists.

In Sect. 6 we show how one can use these results to deduce qualitative information
on the dynamics of reaction networks; in particular, we describe an example where
we deduce that some reaction network cannot give rise to multiple positive equilibria
for any values of its reaction rate constants.

2 Chemical reaction networks and mass-action kinetics

A chemical reaction network is usually given by a finite list of reactions that involve a
finite set of chemical species. As an example, consider the reaction network with two
species A1 and A2 schematically given in the diagram in Fig. 1.

Fig. 1 A reaction network with
two chemical species
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To keep track of the temporal evolution of the state of this chemical system, we
define the functions cA1(t) and cA2(t) to be the molar concentrations of the species
A1, A2 at time t . The chemical reactions in the network are responsible for changes
in the concentrations; for instance, whenever the reaction A1 + A2 → 2A1 occurs,
the net gain is a molecule of A1, whereas one molecule of A2 is lost. Similarly, the
reaction 2A2 → 2A1 results in the the creation of two molecules of A1 and the loss
of two molecules of A2.

To complete the setup, we need to quantify how often every reaction occurs. We will
assume that the rate of change of the concentration of each species is governed by mass-
action kinetics [1–11], i.e., that each reaction takes place at a rate that is proportional
to the product of the concentrations of the species being consumed in that reaction. For
example, under the mass-action kinetics assumption, the contribution of the reaction
A1+ A2 → 2A1 to the rate of change of cA1 has the form kA1+A2→2A1 cA1 cA2 , where
kA1+A2→2A1 is a positive number called reaction rate constant. In the same way,
the reaction 2A2 → 2A1 contributes the negative value −2k2A2→2A1c2

A2
to the rate

of change of cA2 . Collecting these contributions from all the reactions, we obtain the
following system of differential equations associated to our chemical reaction network:

ċA1 = −k2A1→A1+A2 c2
A1
+ kA1+A2→2A1cA1 cA2 − kA1+A2→2A2 cA1 cA2

+ k2A2→A1+A2 c2
A2
− 2k2A1→2A2 c2

A1
+ 2k2A2→2A1 c2

A2

ċA2 = k2A1→A1+A2 c2
A1
− kA1+A2→2A1 cA1 cA2 + kA1+A2→2A2 cA1 cA2

− k2A2→A1+A2 c2
A2
+ 2k2A1→2A2 c2

A1
− 2k2A2→2A1 c2

A2
(1)

Definitions and notations. We now introduce the standard terminology of Chemi-
cal Reaction Network Theory (see [2,4,7]).

We denote by R the set of real numbers, by R+ the set of strictly positive real
numbers, and by R̄+ the set of nonnegative real numbers. For an arbitrary finite set
I we denote by R

I the real vector space of all formal sums α = ∑
i∈I αi i for all

αi ∈ R. Similarly, we denote by R
I+ the set of formal sums α = ∑

i∈I αi i in which
all αi are strictly positive, and by R̄

I+ the set of sums α = ∑
i∈I αi i in which all αi

are nonnegative. The support of an element α ∈ R
I is supp(α) = {i ∈ I : αi �= 0}.

Definition 2.1 A chemical reaction network is a triple (S ,C ,R), where S is the set
of chemical species, C ⊆ R

S+ is the set of complexes (i.e., the objects on both sides
of the reaction arrows), and R is a relation on C , denoted y → y′ and represents the
set of reactions in the network. Moreover, the set R must satisfy the following three
conditions: it cannot contain elements of the form y→ y; for any y ∈ C there exists
some y′ ∈ C such that either y → y′ or y′ → y; and the union of the supports of all
y ∈ C is S .

In other words, the second condition above guarantees that each complex appears
in at least one reaction, and the third condition says that each species appears in at
least one complex. For the system in Fig. 1, the set of species is S = {A1, A2}, the set
of complexes is C = {2A1, A1 + A2, 2A2} and the set of reactions is R = {2A1 �
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A1 + A2, A1 + A2 � 2A2, 2A2 � 2A1}, and consists of 6 reactions, represented as
three reversible reactions.

Note that we regard the complexes as formal linear combinations of the species;
on the other hand, it will be useful to also think of the complexes as (column) vectors
of dimension equal to the number of elements of S , via an identification given by

a fixed ordering of the species. For example, the complexes above are 2A1 =
[

2
0

]

,

A1 + A2 =
[

1
1

]

, and 2A2 =
[

0
2

]

. Among other advantages, this abuse of notation

provides a convenient way of representing the reaction vectors y′ − y for all y →
y′ ∈ R; these vectors will play an important role in what follows. Moreover, for
convenience, we will often refer to a chemical reaction network by specifying R only,
since R encompasses all the information about the network.

Definition 2.2 A mass-action system is a quadruple (S ,C ,R, k), where (S ,C ,R)

is a chemical reaction network and k ∈ R
R+ , where ky→y′ is the reaction rate constant

of the reaction y → y′ ∈ R.

In what follows, we will study mass-action systems only by looking at their struc-
ture, i.e. the network (S ,C ,R), thus deriving conclusions that are independent of
the rate constants given by the vector k.

Mass-action kinetics imposes dynamical constraints on a chemical system, repre-
sented by a well-determined family of ordinary differential equations. Remarkably,
using the notations described above, this system of ODE’s can be summarized in one
compact equation. Before stating it we need to introduce one more notation: given two
vectors u = ∑

s∈S uss and v = ∑
s∈S vss in R

S+ , we denote uv = ∏
s∈S (us)

vs ,
with the convention 00 = 1.

The system of differential equations for the mass-action chemical reaction network
(S ,C ,R, k) is

ċ =
∑

y→y′∈R
ky→y′c

y(y′ − y), (2)

where c ∈ R
S is the positive vector of species concentrations.

The Eq. 2 is obtained in the same way we have obtained the system (1). The total
rate of change is computed by summing the contributions of all the reactions in R.
Each reaction y → y′ contributes proportionally to the product of the concentrations
of the species in its source y, i.e., cy , and also proportional to the number of molecules
gained or lost in this reaction. Finally, the proportionality factor is ky→y′ . For example,
we can rewrite (1) in the vector form (2) as

[
ċ1
ċ2

]

= k2A1→A1+A2 c2A1

[−1
1

]

+ kA1+A2→2A1cA1+A2

[
1
−1

]

+kA1+A2→2A2 cA1+A2

[−1
1

]

+ k2A2→A1+A2 c2A2

[
1
−1

]

+k2A1→2A2 c2A1

[−2
2

]

+ k2A2→2A1 c2A2

[
2
−2

]

. (3)
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The expression on the right hand side of Eq. 2 plays an important role in what
follows. We denote it by r(R, k); in other words, we have:

r(R, k)(c) =
∑

y→y′∈R
ky→y′c

y(y′ − y) (4)

for all c ∈ R
S+ .

3 Identifiability of rate constants given a reaction network and its dynamics

Suppose we are given a reaction network (S ,C ,R) and, by fitting experimental data,
we also know the differential equations (2) that govern the dynamics of the network.
Then, we would like to determine the rate constants of the reactions, i.e., k ∈ R

R+ .
We will see that, in general, the values of k’s that fit the data are not unique. In other
words, it might be impossible for us to specify the “true” values of the rate constants,
no matter how accurate the experimental data is, because there exist several different
k’s that give rise to exactly the same differential equations (2).

For example, note that for the reaction network in Fig. 2, both sets of rate constants
shown produce exactly the same dynamics, given by ċA0 = −9cA0 , ċA1 = ċA2 =
9cA0 .

Let us take a closer look at the mass-action systems in Fig. 2. Suppose the rate
constants are unknown, but the differential equations

ċA0 = −kA0→2A1cA0 − kA0→A1+A2 cA0 − kA0→2A2 cA0 = K0cA0

ċA1 = 2kA0→2A1 cA0 + kA0→A1+A2 cA0 = K1cA0

ċA2 = kA0→A1+A2 cA0 + 2kA0→2A2 cA0 = K2cA0 (5)

are known, i.e., K0, K1, and K2 are known. The rate constants are then solutions of
the (rank 2) linear system of equations

− kA0→2A1 − kA0→A1+A2 − kA0→2A2 = K0

2kA0→2A1 + kA0→A1+A2 = K1

kA0→A1+A2 + 2kA0→2A2 = K2 (6)

which does not have unique solution (On the other hand, we assume that at least one
solution exists).

Fig. 2 A reaction network
where the rate constants cannot
be identified uniquely
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The obstacle that prevents identifiability is therefore the linear dependence of the
vectors [−1, 2, 0]t , [−1, 1, 1]t , and [−1, 0, 2]t , i.e., precisely the three vectors of the
form y′ − y, where y = A0, and y → y′ is a reaction (here vt denotes the transpose
of v). Should our reaction network had been 2A1 ← A0 → 2A2, the system (6)
would have had a unique solution, and the rate constants would have been determined
uniquely.

Definition 3.1 We say that a reaction network (S ,C ,R) has uniquely identifiable
rate constants if r(R, k′) �= r(R, k′′) for any distinct rate constant vectors k′, k′′ ∈
R

R+ .

Then we have:

Theorem 3.2 Under the mass-action kinetics assumption, a reaction network
(S ,C ,R) has uniquely identifiable rate constants if and only if for each source
complex y0 ∈ C , the reaction vectors {y′ − y0 : y0 → y′ ∈ R} are linearly inde-
pendent.

Proof Suppose the reaction vectors {y′ − y : y → y′ ∈ R} are linearly independent
for each source complex y and r(R, k′) = r(R, k′′) for some rate constants vectors
k′, k′′. We therefore have

∑

y→y′∈R
k′y→y′c

y(y′ − y) =
∑

y→y′∈R
k′′y→y′c

y(y′ − y)

for all c ∈ R
S+ , or

∑

y∈C

⎛

⎝
∑

{y′:y→y′∈R}
(k′y→y′ − k′′y→y′)(y′ − y)

⎞

⎠ cy = 0 (7)

for all c ∈ R
S+. The vector components of the left hand side of (7) are polynomial

functions in c, identically equal to zero on the positive orthant; therefore they must
have zero coefficients. This implies that

∑

{y′:y→y′∈R}
(k′y→y′ − k′′y→y′)(y′ − y) = 0

for all source complexes y ∈ C . Since, for each source complex y ∈ C the vectors
{y′ − y : y → y′ ∈ R} are linearly independent, we conclude that k′y→y′ = k′′y→y′
for all reactions y→ y′ in R.

Conversely, suppose for some source complex y0 the vectors {y′ − y0 : y0 →
y′ ∈ R} are linearly dependent. Then

∑
y0→y′∈R αy0→y′(y′ − y0) = 0 for some

real numbers αy0→y′ , not all zero. We can choose k′, k′′ ∈ R
R+ such that k′y0→y′ −

k′′y0→y′ = αy0→y′ for all reactions y0 → y′ ∈ R and k′y→y′ = k′′y→y′ for all reactions
y → y′ ∈ R with source y �= y0. Then the two rate constant vectors k′ and k′′ are
distinct, but Eq. 7 shows that r(R, k′) = r(R, k′′). ��
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Remark Note that if there are k′, k′′ ∈ R
R+ such that r(R, k′) = r(R, k′′), then this

implies that for any k ∈ R
R+ there exists k̃ ∈ R

R+ such that r(R, k) = r(R, k̃).

4 Identifiability of the reaction network given the dynamics

In the preceding section we have shown that, given a reaction network and the dif-
ferential equations that determine its dynamics, it might be impossible to identify its
rate constants uniquely. Now we will argue that, given the dynamics, it might be im-
possible to identify the reaction network uniquely (see [22, p. 66]). For instance, let
us consider the example in Fig. 3.

Although they are distinct, the two reaction networks give rise to the same diffe-
rential equations:

ċA0 =
(

−2

9
− 1

6
− 11

18

)

cA0 = −cA0 ċA0 =
(

−5

9
− 1

9
− 1

3

)

cA0 = −cA0

ċA1 =
(

2

9
+ 2

(
1

6

))

cA0 =
5

9
cA0 ċA1 =

5

9
cA0 =

5

9
cA0

ċA2 =
2

9
cA0 =

2

9
cA0 ċA2 = 2

(
1

9

)

cA0 =
2

9
cA0

ċA3 = 2

(
11

18

)

cA0 =
11

9
cA0 ċA3 =

(
5

9
+ 2(

1

3
)

)

cA0 =
11

9
cA0 (8)

We conclude that, in this case, no matter how accurately we fit our experimental
data, we cannot determine uniquely the chemical reaction network that generates the
observed dynamics, because there exist multiple networks that produce exactly the
same differential equations.

In the light of this fact, it is natural to ask: when can two different reaction networks
generate the same differential equations? Whenever this is true, we will call these two
reaction networks confoundable. An answer to this question is given in Theorem 4.4.

The example in Fig. 3 illustrates well what happens in general. From Eq. 8 we see
that the two networks shown in Fig. 3 produce the same dynamics because the vector
[−1, 5/9, 2/9, 11/9] can be written as

Fig. 3 Two different reaction
networks that can give rise to the
same system of differential
equations
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Fig. 4 Cones corresponding to
the reaction networks in Fig. 3

⎡

⎢
⎢
⎣

−1 −1 −1
1 2 0
1 0 0
0 0 2

⎤

⎥
⎥
⎦

⎡

⎣
2/9
1/6

11/8

⎤

⎦ ,

and as
⎡

⎢
⎢
⎣

−1 −1 −1
1 0 0
0 2 0
1 0 2

⎤

⎥
⎥
⎦

⎡

⎣
5/9
1/9
1/3

⎤

⎦ .

Denote K = [0, 5/9, 2/9, 11/9]. Then

[−1, 5/9, 2/9, 11/9] = K−A0 = 2

9
(A1+A2−A0)+1

6
(2A1−A0)+11

8
(2A3−A0)

= 5

9
(A1+A3−A0)+1

9
(2A2−A0)+1

3
(2A3−A0).

Therefore, confoundability is due to the nonempty intersection of the convex cones
generated by the reaction vectors in the two networks; this is illustrated in Fig. 4.

In order to formulate Theorem 4.4 we need the following definitions:

Definition 4.1 Let (S ,C ,R) be a chemical reaction network. Define the following
family of functions:

Dyn(R) =
{

r(R, k) : k ∈ R
R+

}
.
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Recall that, as defined in (4), r(R, k)(c)= ∑
y→y′∈R ky→y′cy(y′ − y) for all

concentration vectors c ∈ R
S+ .

Definition 4.2 Two chemical reaction networks (S ,C ′,R ′) and (S ,C ′′,R ′′) are
called confoundable if Dyn(R ′) ∩ Dyn(R ′′) �= ∅.

In other words, two reaction networks are confoundable if they produce the same
mass-action differential equations for some choice of the rate constants. In that case,
we cannot distinguish between the two reaction networks by fitting experimental data.
Note that the source complexes y ∈ C appear as exponents of c in the polynomials
of Dyn(R), and no other complexes have this property; therefore, Dyn(R) specifies
them uniquely. This implies that, if two chemical reaction systems are confoundable,
then their source complexes must be the same.

Motivated by the discussion of the example in Fig. 3, we introduce the following
definition.

Definition 4.3 For a reaction network (S ,C ,R) and y0 ∈ C we denote by

ConeR(y0) =
⎧
⎨

⎩

∑

y0→y′∈R
αy0→y′(y′ − y0) : αy0→y′ > 0 for all y0 → y′ ∈ R

⎫
⎬

⎭
,

the open convex cone generated by the set {y′ − y0 : y0 → y′ ∈ R}.
(For more information on convex cones and their generating sets see [24].) Then we
have:

Theorem 4.4 Under the mass-action kinetics assumption, two chemical reaction net-
works (S ,C ′,R ′) and (S ,C ′′,R ′′) are confoundable if and only if they have the
same source complexes and ConeR ′(y) ∩ ConeR ′′(y) is nonempty for every source
complex y.

Proof Dyn(R ′)∩Dyn(R ′′) �= ∅ if and only if there are rate constant vectors k′ and k′′
forR ′ andR ′′ respectively, so that

∑
y→y′1∈R ′ k

′
y→y′1

cy(y′1−y) =∑
y→y′2∈R ′′ k

′′
y→y′2

cy

(y′2 − y) for all c ∈ R
S+ . We rewrite this as

∑

y∈C

⎛

⎝
∑

{y′1:y→y′1∈R ′}
k′y→y′1

(y′1 − y)−
∑

{y′2:y→y′2∈R ′′}
k′′y→y′2

(y′2 − y)

⎞

⎠ cy = 0 (9)

for all c ∈ R
S+ . The vector components of the left hand side of (9) are polynomial

functions in c, identically zero on the positive orthant, therefore having zero coeffi-
cients. Then (9) is equivalent to

∑
{y′1:y→y′1∈R ′} k

′
y→y′1

(y′1−y)−∑
{y′2:y→y′2∈R ′′} k

′′
y→y′2

(y′2 − y)= 0 for each source complex y, i.e., ConeR ′(y) ∩ ConeR ′′(y) �= ∅ for all
source complexes y. ��
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Theorem 4.4 gives a necessary and sufficient condition for two reaction networks
R ′, R ′′ to be capable of producing the same dynamics for some choice of their two
sets of rate constants. Note that the proof of the theorem actually says more: the two
reaction networks are unconditionally confoundable, i.e., Dyn(R) = Dyn(R ′′), if
and only if ConeR ′(y) = ConeR ′′(y) for all source complexes y. If two reaction
networks are unconditionally confoundable, then, no matter what the rate constants
of one network are, there is a set of rate constants for the other one that give the same
dynamics. This allows the reduction of the number of reactions in a network, without
loss of generality of its dynamics, by considering only reactions that correspond to a
set of generators of each cone ConeR(y). This fact will be illustrated by an example
in the next section.

5 Applications: modeling unimolecular and bimolecular reaction networks

Suppose we are given experimental results for known chemical species A1, . . . , An ,
but we don’t know what the reactions are; suppose, however, that all complexes are of
the form Ai , 2Ai or Ai + A j . Since we are able to observe the dynamics, it is natural
to try to construct a corresponding reaction network model that takes into account
all the possible reactions, even if for some reactions the rate constants will turn out
very small or zero. However, since we know from Sect. 4 that there might be multiple
reaction networks that produce the same dynamics, we might as well look for a model
that has a minimal number of reactions. This is helpful from a practical point of view
since it significantly reduces the number of parameters (i.e., reaction rate constants)
involved.

For example, consider the case of 3 species, A1, A2, A3. The “full” network is
composed of reactions

{Ai → A j }i �= j , Ai → A j + Ak, Ai + A j → Ak, {Ai + A j → Ak + Al}{i, j}�={k,l},
(10)

where i, j, k ∈ {1, 2, 3}. In other words, we are allowing all reactions involving
unimolecular and bimolecular complexes, except for the trivial reactions y → y. (Note
that reactions that do not conserve mass, such as Ai → Ai + A j , may account for the
existence of chemical species that are present in great excess, and whose dynamics
can be neglected since their concentrations are practically constant; in other words,
these reactions could be understood as Ai + X → Ai + A j , where the concentration
of X is practically constant. See [2,7] for more details.)

Let us count the reactions in this model. Since we allow all the possible reactions
between the unimolecular or bimolecular complexes, except for y → y, any complex
is a source in N − 1 reactions, where N is the number of complexes. Therefore the
total number of reactions is N (N − 1). There are 3 unimolecular complexes; for the
bimolecular complexes Ai + A j there are two cases, according to whether i is equal
or different from j , and we count

(3
2

) = 3 complexes Ai + A j with i �= j and 3
complexes 2Ai . Therefore N = 9 and the full network (10) has 9× 8 = 72 reactions.

On the other hand, a “reduced” network that covers all the possible dynamical
systems produced by the full network can be obtained by using only the reactions
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Fig. 5 ConeR(y) for the three
possible types of source
complexes in (11): (a) reactions
with source A1; (b) reactions
with source 2A1;
(c) reactions with source
A1 + A2

corresponding to generating rays of each cone ConeR(y), for all sources y, as explained
at the end of Sect. 4. Diagrams corresponding to each of the three different types of
sources are given in the Fig. 5. The lines joining the source complex with all other com-
plexes represent the reactions; the thick lines are extreme rays of the corresponding
cone, and therefore they give the reduced reaction network
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Ai → 2Ai 2Ai → Ai Ai + A j → 2Ai

Ai → A j 2Ai → 2A j Ai + A j → 2A j

Ai → Ak 2Ai → 2Ak Ai + A j → 2Ak

Ai + A j → Ai (11)

where (i, j, k) are a permutation of (1, 2, 3) and the expression Ai + A j assumes
i < j . Note that this choice of reduced network is not unique: except for the case of
unimolecular source y we can choose different generators for ConeR(y). For example,
the reaction Ai+A j → Ai can be replaced by Ai+A j → A j , the reaction Ai+A j →
2Ak can be replaced by Ai + A j → Ai + Ak and 2Ai → 2A j can be replaced by
2Ai → Ai + A j .

In the case shown in Fig. 5a the minimal set of reactions (i.e., reactions whose
vectors generate ConeR(A1)) is unique. Moreover, Theorem 3.1 guarantees that the
rate constants of these reactions are uniquely determined, since these three vectors
are linearly independent. In the case shown in Fig. 5b the minimal set of reactions
is not unique; however, given any minimal set of reactions, the corresponding rate
constants are uniquely determined, by Theorem 3.1. Interestingly, in the case shown
in Fig. 5c, the choice of the minimal set of reactions is not unique, and no matter which
minimal set of reactions is chosen, the rate constants are not uniquely determined, also
by Theorem 3.1. In other words: no dynamically equivalent subnetwork has uniquely
identifiable rate constants in this case. This fact must be taken into account whenever
we try to design a numerical procedure to estimate the rate constant vector k from
experimental data.

Even if the minimal set of reactions is not unique, its cardinality is always the same.
Specifically, in our case it contains 3(3 + 3 + 4) = 30 reactions, which is a significant
reduction from 72 reactions in the full network.

A version of the computation above works in general, in the case of n species. There
are (n+ n(n−1)

2 +n) complexes and therefore there are (2n+ n(n−1)
2 )(2n+ n(n−1)

2 −1)

reactions. A reduced model can be constructed by generalizing the reaction network
(11). Namely, for source complexes Ai we choose the reactions Ai → 2Ai and
Ai → A j for all j �= i ; for source complexes 2Ai , we choose the reactions 2Ai → Ai ,
2Ai → 2A j , for all i �= j ; and for source complexes Ai+A j with i < j we choose the
reactions Ai+ A j → 2Ak for all k ∈ {1, . . . , n}, and also the reaction Ai+ A j → Ai .

To check that these three sets of reactions do indeed generate the corresponding cones,
we describe a simple algebraic computation. For example, for the unimolecular source
A1 we need to check that the n reaction vectors in the reduced network

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A2 − A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
1
0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A3 − A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
0
1
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , An − A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

conically generate all the other reaction vectors with source A1, namely,
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
∗
∗
2
∗
∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
∗
1
∗
1
∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
∗
∗
1
∗
∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

where “*” represent vertical sequences of zeros, possibly empty. The first vector cor-
responds to reactions A1 → 2Ai , i �= 1, the second to A1 → Ai + A j , where
i �= j are different from 1 and the third one represents reactions A1 → A1 + Ai ,
i �= 1. It is easy to see that this is indeed true: for example, the third vector in (12) is
Ai = [0, . . . , 1, . . . , 0]t = A1+ Ai − A1 so it belongs to ConeR(A1) for any i ; then
Ai + Ai − A1 and Ai + A j − A1 (the first and the second vectors in (12)) are also in
ConeR(A1).

The number of reactions in the reduced network is n2 + n2 + n(n−1)
2 (n + 1) =

2n2 + n(n2−1)
2 ; therefore, we reduced the number of reactions under consideration

from O(n4) to O(n3).

6 Transfer of properties: an SR Graph example

Some of the results discussed in Sect. 4 can be used to deduce dynamical properties
of a reaction network by studying another network. More precisely, if two reaction
networks R ′, R ′′ have the property that Dyn(R ′) ⊆ Dyn(R ′′) then dynamical pro-
perties of R ′ can be inferred from looking at the (possibly simpler) network R ′′. Such
properties are therefore transferred from R ′′ to R ′.

We illustrate these considerations in what follows. Denote by R ′ the reaction net-
work shown on the left side of Fig. 6 and by R ′′ the reaction network shown on the
right side of Fig. 6.

In this example, in addition to regular reactions, we are allowing inflow and outflow
for all the species, and we model this in terms of special “reactions” 0 → Ai and

Fig. 6 The dynamics of the
more complicated network on
the left can be understood by
studying the simpler network on
the right
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Fig. 7 The SR graph of R′

Fig. 8 The SR graph of R′′

Ai → 0 (see [7] for a detailed discussion of inflow and outflow reactions in the
context of mass-action kinetics).

It is easy to see that ConeR ′(0) = ConeR ′′(0), ConeR ′(Ai ) = ConeR ′′(Ai ) for
all i ∈ {0, 1, 2, 3}, and ConeR ′(2Ai )=ConeR ′′(2Ai ) for all i ∈ {1, 2, 3}; therefore
Dyn(R ′) = Dyn(R ′′). We will show that R ′ cannot have multiple equilibria for any
value of its rate constants, by showing that R ′′ has this property. Our tool will be the
SR graph theorem, whose hypotheses are satisfied by R ′′ but not by R ′. Therefore,
this reduction allows us to extend the applicability of the SR graph Theorem.

The SR (Species-Reactions) graph is a bipartite graph introduced in [8]; its set of
nodes consists of species and reactions (each reaction or pair of reversible reactions
appear in a single node). The edges of the graph connect species nodes and reaction
nodes as follows: if a species appears in a reaction, then there is an edge joining the
corresponding species and reaction nodes; moreover, that edge is labeled with the
complex in which the species appears. The two SR graphs associated to the reaction
networks R ′ and R ′′ are depicted in Figs. 7 and 8, respectively. (See [6] for more
examples.)
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A little more terminology is needed in preparation for the SR graph result. A c-pair
(complex pair) is a pair of edges that meet at a reaction node and have the same label.
A cycle of the SR graph that contains an odd number of c-pairs is called an o-cycle
(odd cycle), whereas cycles that contain an even number of c-pairs are called e-cycles
(even cycles). In particular, cycles with no c-pairs are e-cycles. The stoichiometric
coefficient of an edge is the coefficient of the adjacent species in the complex label
of the edge. Cycles for which alternately multiplying and dividing the stoichiometric
coefficients along its edges gives the result 1 are called s-cycles. We say that two cycles
split a c-pair if there is a c-pair that lies in the union of the sets of edges of the two
cycles, but not in their intersection.

The SR graph is used in [8] to discriminate between chemical reaction networks
that can admit multiple equilibria and those that cannot. Our present purpose is to
determine the capacity for multiple equilibria of the reaction network R ′, and we will
use the following result ([8, Corollary 7.2]):

Theorem 6.1 Let R be a reaction network such that all the cycles of its SR graph are
o-cycles or s-cycles, and no two e-cycles split a c-pair. Then the mass-action dynamical
system associated to R cannot have multiple positive equilibria, for any value of the
rate constant vector k.

The SR graph of R ′ in Fig. 7 fails to satisfy the hypothesis of this theorem. For
example, the cycle that goes through the nodes A0, A0 � 2A1, A1, and A0 → A1+A2
does not contain any c-pairs, so it is not an o-cycle, but it is also not an s-cycle: the
stoichiometric coefficients of its edges are 1, 2, 1, 1 and the result of the alternate
multiplication and division is 2 or 1/2, depending on which edge one starts. Therefore
Theorem 6.1 does not apply, and we are not able to draw an immediate conclusion on
the existence of multiple equilibria for R ′. However, the hypotheses of the theorem
are trivially satisfied by the SR graph of R ′′ which has no cycles. We conclude that R ′′
cannot have multiple equilibria and extend this conclusion to R ′, because Dyn(R ′) =
Dyn(R ′′).
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